Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl.

نویسندگان

  • Vellareddy Anantharam
  • Masashi Kitazawa
  • Jarrad Wagner
  • Siddharth Kaul
  • Anumantha G Kanthasamy
چکیده

In the present study, we characterized oxidative stress-dependent cellular events in dopaminergic cells after exposure to an organic form of manganese compound, methylcyclopentadienyl manganese tricarbonyl (MMT). In pheochromocytoma cells, MMT exposure resulted in rapid increase in generation of reactive oxygen species (ROS) within 5--15 min, followed by release of mitochondrial cytochrome C into cytoplasm and subsequent activation of cysteine proteases, caspase-9 (twofold to threefold) and caspase-3 (15- to 25-fold), but not caspase-8, in a time- and dose-dependent manner. Interestingly, we also found that MMT exposure induces a time- and dose-dependent proteolytic cleavage of native protein kinase Cdelta (PKCdelta, 72-74 kDa) to yield 41 kDa catalytically active and 38 kDa regulatory fragments. Pretreatment with caspase inhibitors (Z-DEVD-FMK or Z-VAD-FMK) blocked MMT-induced proteolytic cleavage of PKCdelta, indicating that cleavage is mediated by caspase-3. Furthermore, inhibition of PKCdelta activity with a specific inhibitor, rottlerin, significantly inhibited caspase-3 activation in a dose-dependent manner along with a reduction in PKCdelta cleavage products, indicating a possible positive feedback activation of caspase-3 activity by PKCdelta. The presence of such a positive feedback loop was also confirmed by delivering the catalytically active PKCdelta fragment. Attenuation of ROS generation, caspase-3 activation, and PKCdelta activity before MMT treatment almost completely suppressed DNA fragmentation. Additionally, overexpression of catalytically inactive PKCdelta(K376R) (dominant-negative mutant) prevented MMT-induced apoptosis in immortalized mesencephalic dopaminergic cells. For the first time, these data demonstrate that caspase-3-dependent proteolytic activation of PKCdelta plays a key role in oxidative stress-mediated apoptosis in dopaminergic cells after exposure to an environmental neurotoxic agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells.

Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn induces dopaminergic neuronal cell death remains unclear. In the present study, we sought to investigate the key downstream apoptotic cell signaling events that contribute to Mn-induced cell death in mesencephalic dopaminergic neuronal (N27) cells. Mn exp...

متن کامل

Oxidative stress and mitochondrial-mediated apoptosis in dopaminergic cells exposed to methylcyclopentadienyl manganese tricarbonyl.

Methylcyclopentadienyl manganese tricarbonyl (MMT), an organic manganese-containing gasoline additive, was investigated to determine whether MMT potentially causes dopaminergic neurotoxic effects. MMT is acutely cytotoxic and dopamine-producing cells (PC-12) seemed to be more susceptible to cytotoxic effects than nondopaminergic cells (striatal gamma-aminobutyric acidergic and cerebellar granul...

متن کامل

6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta.

6-Hydroxydopamine is a neurotoxin commonly used to lesion dopaminergic pathways and generate experimental models for Parkinson disease, however, the cellular mechanism of 6-hydroxydopamine-induced neurodegeneration is not well defined. In this study we have explored how 6-hydroxydopamine neurotoxicity is initiated. We have also investigated downstream signaling pathways activated in response to...

متن کامل

Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MEKK1.

The stress-activated protein kinase (SAPK, alternatively JNK) is activated rapidly by cell stress stimuli such as inflammatory cytokines and oxidative stress, and more slowly by the initiation of the apoptotic cell death response by events such as ligation of the Fas protein. Mitogen-activated protein kinase/Erk kinase kinase-1 (MEKK1) is an activator of SAPK, serving as a SAPK-kinase-kinase th...

متن کامل

Ubiquitin-proteasome system dysfunction in experimental models of Parkinson's disease

The present study investigates cellular mechanisms underlying the pathogenic role of ubiquity proteasome system (UPS) dysfunction in dopaminergic degeneration following exposure to Parkinsonian neurotoxins. Mutations or overproduction of α-synuclein have been shown to be associated with familial Parkinson’s disease (PD), and wild type αsynuclein is the major component of Lewy bodies, the protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2002